Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel.

نویسندگان

  • Mayumi Aoki
  • Toyoji Kaneko
  • Fumi Katoh
  • Sanae Hasegawa
  • Naoaki Tsutsui
  • Katsumi Aida
چکیده

To elucidate the mechanisms associated with water absorption in the intestine, we compared drinking and intestinal water absorption in freshwater- and seawater-adapted Japanese eels, and investigated a possible involvement of aquaporin (AQP) in the absorption of water in the intestine. Seawater eels ingested more water than freshwater eels, the drinking rate being 0.02 ml kg(-1) h(-1) in fresh water and 0.82 ml kg(-1) h(-1) in sea water. In intestinal sacs prepared from freshwater and seawater eels, water absorption increased in time- and hydrostatic pressure-dependent manners. The water absorption rates were greater in seawater sacs than in freshwater sacs, and also greater in the posterior intestine than in the anterior. In view of the enhanced water permeability in the intestine of seawater eel, we cloned two cDNAs encoding AQP from the seawater eel intestine, and identified two eel homologues (S-AQP and L-AQP) of mammalian AQP1. S-AQP and L-AQP possessed the same amino acid sequence, except that one amino acid was lacking in S-AQP and two amino acids were substituted. Eel AQP1 was expressed predominantly in the intestine, and the expression levels were higher in seawater eel than in freshwater eel. Immunocytochemical studies revealed intense AQP1 immunoreaction in the apical surface of columnar epithelial cells in seawater eel, in which the immunoreaction was stronger in the posterior intestine than in the anterior. In contrast, the immunoreaction was faint in the freshwater eel intestine. Preferential localization of AQP1 in the apical membrane of epithelial cells in the posterior intestine of seawater eel indicates that this region of the intestine is responsible for water absorption, and that AQP1 may act as a water entry site in the epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater.

Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- tr...

متن کامل

بررسی کیفی و کمی بیان پروتئین‌ آکواپورین1 در شبکه کوروئید رت نژاد سویتار

Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...

متن کامل

Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium.

Aquaporin-2 (AQP-2) is the vasopressin-regulated water channel expressed in the apical membrane of principal cells in the collecting duct and is involved in the urinary concentrating mechanism. In the rat distal colon, vasopressin stimulates water absorption through an unknown mechanism. With the hypothesis that AQP-2 could contribute to this vasopressin effect, we studied its presence in rat c...

متن کامل

Bicarbonate Transport Systems in the Intestine of the Seawater Eel

Utilizing a pH-stat method, the rates of mucosal and serosal alkalinization were measured separately in the seawater eel intestine. These two rates were dependent on contralateral HCO3" concentration and were inhibited by contralateral application of DIDS, an inhibitor of HCO3~ transport, indicating that the mucosal and serosal alkalinization are due to HCO3~ secretion and absorption, respectiv...

متن کامل

Ammonotelic teleosts and urea transporters.

UREA, A SMALL MOLECULE, IS an end product of nitrogen metabolism. In fish, it is mostly used as an osmolyte or excreted as a waste product of ammonia detoxification (22). Marine elasmobranch fish (dogfish, skate, and stingray) keep their plasma osmolality ( 1,050 mosmol/kgH2O) slightly above that of seawater by retaining high concentrations of urea, ranging from 300–600 mM (4). In contrast, tel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 19  شماره 

صفحات  -

تاریخ انتشار 2003